Concrete Pipes

Latest News

Lack of verified sewerage & drainage pipes carbon data can jeopardize efforts to address Climate Change in the sector

Ten years on since we published the first third party verified carbon footprint for UK manufactured concrete pipes and manholes, the drainage & sewerage sector continues to struggle with the availability of verified and representative carbon data for certain construction products and components. The case for pipeline products is specifically concerning: While the UK concrete drainage sector have representative and 3 rd party verified carbon footprint data accurately reflecting their supply chain, the situation with the carbon data for other types of pipeline products is completely different as non-representative supply chain data is still being used.

Ten years ago, BPDA was one of the first construction product sectors to publish a 3 rd party verified carbon footprint for concrete pipes and manholes to standard PAS 2050. BPDA members would then introduce a wide range of measures and initiatives to reduce carbon, from precast base manholes to a number of concrete pipes lifting and installation equipment designed to improve H&S and reduce emissions from traditional installation methods. The EPD we published in 2018 revealed a 9% reduction to the carbon footprint of concrete pipes.

In 2011, there was very little attention to this topic within the sewerage and drainage sector. Today, the situation is totally different. An Infrastructure Carbon Review in 2013, first launched with Government support, resulted in the development of a new Carbon Management guidance standard for the industry, known as PAS 2080. A number of Water Companies today operate sufficient carbon accounting systems to ISO 14064 and Water UK has even launched a carbon routemap to 2030.

However, in order to properly assess and quantify the Capital Carbon of water & wastewater projects, there is a need for robust and reliable embodied carbon data for different products and materials in accordance with recognised methodologies. PAS 2080 identifies a number of specific methodologies. Only verified EPDs or Carbon Footprints to EN 15804, ISO 21930, ISO 14067 or PAS 2050 can be used. Such EPDs will need to be representative of the components, products and technologies employed. The carbon data needs to be “regionally applicable” and “reflect the technologies used in the supply chain” of that project. For a pipeline study to be acceptable under PAS 2080, there is need for these representativeness requirements to be fulfilled.

Unfortunately, this is currently not happening. While the UK’s concrete pipe sector has so far published at least three carbon footprint reports to PAS 2050/ EN 15804 and three 3 rd party verified comparative studies, the UK’s plastic drainage sector has not made any UK-specific carbon footprint data publicly available. The plastic pipe industry across all Europe currently has a single set of data covering the entire sector. The data is believed to be reliant on earlier plastic resin studies by Plastics Europe which are based on 100% European resin production. This may no longer be the case in the EU or UK market as some evidence suggests that imported HDPE resin already makes a significant proportion of resin consumed in the EU (JRC, 2020). A JRC study last year suggested that almost two thirds of all plastic resin imported to the EU comes from the Middle East where completely different energy sources and technologies are employed (see Table 4.6 here). If it turns out that plastic drainage manufacturers continue to use Middle Eastern resin, then this should reflect on their generic carbon footprint (currently based on an old study carried out 15 years ago). Last year, a study conducted by Circular Ecology for BPDA revealed that an HDPE pipe manufactured from Middle Eastern resin can have a carbon footprint 33% higher than one made of resin imported from a European country like Norway.

10 years on, and in preparation for a new roadmap initiative that would account for embodied carbon reductions, there is a need for further scrutiny and more detailed guidance will need to be imposed to ensure that embodied carbon data reported by pipeline manufacturers is accurate and representative of their true supply chain. The fight against Climate Change cannot be won with questionable embodied carbon data. For more information about the UK concrete pipeline industry’s carbon footprinting, EPD and sustainability work, please visit:
Read more

Aqua-SlotTM offers a durable, effective drainage solution for the M6

In their quest to find a suitable drainage solution, which can be rapidly installed at their M6 J13-J15 upgrade scheme, Kier Highways worked closely with Stanton Bonna to develop an offsite linear drainage system called the Stanton Bonna Aqua-Slot TM Drain.

Kier Highways was faced with a challenge in their M6 J13-16 upgrade. Their traditional manufacturing method for surface water slot drains used in-situ concrete slip-forming, a process which can be considerably time-consuming, leading to significant delays due to the extended partial highway closure, and vulnerable to weather conditions. In-situ concrete also meant more trades, deliveries, traffic, and workforce on site. Kier Highways wanted a solution that enabled them to have more control over the project’s time and schedule. It was evident to Kier Highways, especially after discussions with Stanton Bonna Business Development Manager, Neil O’Sullivan, that an offsite solution was the way to go.

The discussion with Stanton Bonna led to a decision to replace the in-situ concrete slipform system with an offsite precast concrete system which can be mass produced and rapidly installed for such Motorway upgrade schemes. The M6 project was just a start for such a new system in constructing slot drains in highways.

As the scheme required up to 31km of Aqua-slot TM Drain, it was necessary to get early input from the client, design team and Stanton Bonna, allowing mass production to start far ahead of on site installation. The factory production programme was tightly aligned to the scheme’s requirements. As the Aqua-Slot TM Drain units are manufactured in Stanton Bonna’s factory in Derbyshire, the central UK location was ideal for the direct, just in time delivery to site. The units were then rapidly installed on site at a speed of around 200m per day, with almost no delays due weather conditions.

Kier Highways’ project director, Richard French, was very pleased with the offsite winning formula employed with Aqua-Slot. He noted that the “…Outputs are better than expected and we are very pleased with the product. Any reduction in trades and numbers in what is a very constrained environment has to be seen as a positive”.

Find out more about the Award winning Aqua-slot, from Stanton Bonna, here:
Read more

Marshalls CPM offsite manhole system offers best sustainable option for housing development in Leighton Buzzard

Working in a 95 hectare Redrow housing development in Leighton Buzzard, civil engineering contractors Fox (Ownby) Ltd were faced with the challenge of supplying a low carbon, high quality drainage system for the development. Marshall CPM’s precast-based Perfect Manhole offered the ideal solution.

Once completed, Redrow’s Leestone Park housing development at Chamberlin Barn, Leighton Buzzard, will consist of 950 homes, shops, a local centre and a new lower school. The main project’s civil engineering & earthworks contractor, Fox (Owmby), were faced with the challenge of reducing the overall embodied carbon impacts of their operations. The Market Rason based contractor contacted Marshalls CPM to enquire about carbon-efficient solutions for the drainage systems.

Marshalls CPM proposed an offsite solution using their precast based “Perfect Manhole”, employing a range of 1200mm, 1500mm and 1800mm manhole systems. The choice was based on a study carried out a few years ago by international consultants Carbon Clear on different manhole systems which found that a precast sealed manhole system can have a 30% and 45% lower carbon footprint than plastic and traditional box-based concrete manholes (respectively). The use of the Perfect Manhole sealed system eliminates the need for concrete surrounds to improve watertightness and resistance to flotation. Carbon Clear also found that concrete pipes can lower the carbon emissions of construction by 35% on average compared to equivalent plastic pipes. A more recent study found that savings may actually double over the whole-life of a project as, unlike plastic manholes, precast based manholes are designed and manufactured to meet a 100+ years Design Life. Another advantage of precast-based systems is the ease and speed with which it can be installed.

James Stewart from Fox (Owmby) Ltd noted “this is the first time we have used Marshalls CPM sealed systems. We cannot believe how easy it is, with all the benefits that it offers we will continue to install the Perfect Manhole solution”.

More information on Marshalls CPM “Perfect Manhole” can be found here:
Read more

Concrete & Cement sector roadmap to Net Zero Carbon published

Concrete & Cement sector roadmap to Net Zero Carbon published

The UK concrete and cement sector has launched its roadmap to become a carbon- negative industry by 2050, removing more greenhouse gas from the atmosphere than it generates annually from the manufacture of concrete and cement.

The roadmap, launched under the Mineral Products Association’s (MPA) concrete body “UK Concrete”, introduces a decarbonisation path using a wide range of technologies such as Carbon Capture, Use or Storage (CCUS), fuel switching and investment in new types and blends of low-carbon cement.

The announcement comes after similar roadmaps and initiatives were launched by the Global Cement & Concrete Association (GCCA) and the European cement association Cembureau earlier this year.

The UK concrete and cement sector has already been successful in reducing their carbon emissions by 53% by 1990. One interesting fact about this roadmap is that it does not account for any offsetting of carbon (the process of buying carbon credits from other sectors/ processes to compensate for own emissions) or outsourcing of any manufacturing activities. The initiative has already won praise from Chris Stark, Chief Executive of the Committee on Climate Change (CCC).

The initiative was developed in consultation with all MPA product associations and groups, including the British Precast Drainage Association (BPDA). BPDA recently published a study looking at the Whole Life Carbon emissions associated with drainage and sewerage pipeline solutions. The study, based on a model developed by the ICE Database authors, Circular Ecology, proves that concrete pipes can have a significantly lower carbon footprint compared to plastic alternatives. BPDA is already building on that study, and the Net Zero Roadmap, to develop their own initiatives toward lower carbon precast drainage products and Net-Zero carbon by 2050.

Read more

FP McCann’s Northamptonshire housing development box culverts may be the largest ever to be manufactured in Britain

FP McCann’s Northamptonshire housing development box culverts may be the largest ever to be manufactured in Britain

A box culvert installed at a Permissions Homes development at Weldon Park, Corby, may be the largest ever to be manufactured and installed in Britain.

The 28-metre-long culvert solution is made of 20 box culvert sections, each spans 6000mm and 3000mm high. The culvert channels an existing watercourse through the site. Specialist civil engineering groundworks contractors, Paul John Construction, needed a culverting solution large enough to channel the watercourse and with sufficient structural capability to carry an access road into the development. Precast concrete box culverts offered the ideal solution. The 20 large sections were manufactured at FP McCann’s Byley factory, weighing 22 tonnes each. The units were installed over a pre-prepared concrete bed base using a specialist crane and jointed with bitumen rubber sealing strips. Commenting on the culvert installation, Selwyn Bryers (Director for Paul John Construction) praised the box culvert team at FP McCann for their help in designing the offsite precast solution. He added that the units were installed within a very brief period “…demonstrating the flexibility that concrete box culverts can offer in such civil engineering project”.

In addition to the giant box culvert, the site required another six separate smaller culverts consisting of 102 box culverts units (2100mm x 1000mm). One of these required an inbuilt mammal ledge.

With a section area of 18m 2 , BPDA believes that the units used in this project are likely to be the largest monolithic box culvert units ever to be manufactured in Britain (at least in the last 2 decades). For more information on that case study, please contact FP McCann for more information:

Read more