mpa
 British Precast Drainage Association

Publications from the British Precast Drainage Association (BPDA):

BPDA was formed in 2017 from the integration of the Concrete Pipeline Systems Association (CPSA) and the Box Culvert Association (BCA).

Information published by both CPSA and BCA will be rebranded and replaced as BPDA in due course. New material will be branded BPDA.

All CPSA and BCA web traffic will be redirected to the new BPDA web site at www.precastdrainage.co.uk

Carbonation (Part 2) - Comparing the carbon footprint of concrete and plastic pipes

CO_{2} absorbed due to carbonation can reduce the effective carbon footprint of concrete pipes. This additional reduction can be used to show how concrete pipes compare against plastic pipes.

The table below shows how concrete pipes compare against equivalent sizes of plastic pipes when the impact of carbonation is added to the cradle-to-site carbon footprints of concrete pipes. Data on cradle-to-site carbon footprints for concrete and plastic pipes was sourced from the CPSA Carbon Clear (2010)dेPipeline Systems Comparison Reportòand the impact of carbonation was sourced from CPSA Information Sheet ñCarbonation (Part 1) ï How it reduces the carbon footprint of concreteò

Size of pipe (mm in diameter)	PP Structured wall	Plastic Pipes $\left(\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}\right)$ Structured wall	HDPE $(4 \mathrm{kN} /$ $\left.\mathrm{m}^{2}\right)$	uPVC Structured wall
DN225	24.79	N/A	N/A	30.96
DN300	37.48	N/A	N/A	47.37
DN450	N/A	61.07	79.82	N/A
DN600	N/A	83.23	125.37	N/A
DN750	N/A	153.07	170.86	N/A
DN900	N/A	171.04	224.47	N/A
DN1050	N/A	N/A	270.59	N/A
DN1200	N/A	N/A	409.48	N/A
DN1350	N/A	N/A	438.55	N/A
DN1500	N/A	N/A	637.27	N/A
DN1800	N/A	N/A	760.96	N/A
DN2100	N/A	N/A	$1,071.57$	N/A

Concrete Pipes $\left(\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}\right)$			
Bedding Class S	Bedding Class B	Bedding Class F	Bedding Class N
26.39	21.55	21.18	20.75
37.00	31.19	31.71	30.15
60.87	50.57	49.55	48.40
97.60	83.13	81.59	79.89
138.76	120.11	118.00	115.71
171.30	147.98	145.23	142.28
223.04	195.96	192.51	188.86
279.48	248.49	244.26	239.88
341.44	304.67	299.32	293.79
422.63	379.75	373.14	366.33
551.68	503.75	495.69	487.76
665.41	611.58	602.55	593.95

When the design of a concrete pipeline can use a Class B, F or N Bedding (rather than a Class S - Full granular surround) the embodied carbon savings over plastic pipes are overwhelming. Even when both concrete and plastic pipes are installed in Class S full granular surround, concrete pipes are the preferred option with a 38\% lower carbon footprint for DN2100 concrete pipes compared with DN2100 HDPE pipes.

References

- CPSA Information Sheet (2011) Carbonation (Part1): How it reduces the carbon footprint of concrete.
- CPSA, Carbon Clear (2010) CPSA Pipeline Systems Comparison Report.

For further information please contact your usual supplier
 Buchan Concrete Solutions
 Tel: 01606843500
 CPM Group
 Tel: 01179812791
 FPMcGann
 Tel: 01530240000
 Milton Precast
 Tel: 01795425191
 Stanton Bonna
 Tel: 01159441448

Concrete Pipeline Systems Association - 60 Charles Street, Leicester, LE1 1FB
Tel: 01162536161 Email: mail@concretepipes.co.uk www.concretepipes.co.uk

